Abstract

Inverse modeling involves repeated evaluations of forward models, which can be computationally prohibitive for large numerical models. To reduce the overall computational burden of these simulations, we study the use of reduced order models (ROMs) as numerical surrogates. These ROMs usually involve using solutions to high-fidelity models at different sample points within the parameter space to construct an approximate solution at any point within the parameter space. This paper examines an input–output relational approach based on Gaussian process regression (GPR). We show that these ROMs are more accurate than the linear lookup tables with the same number of high-fidelity simulations. We describe an adaptive sampling procedure that automatically selects optimal sample points and demonstrate the use of GPR to a smooth response surface and a response surface with abrupt changes. We also describe how GPR can be used to construct ROMs for models with heterogeneous material properties. Finally, we demonstrate how the use of a GPR-based ROM in two many-query applications—uncertainty quantification and global sensitivity analysis—significantly reduces the total computational effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.