Abstract

Projection-based model reduction techniques have been shown to be very effective for reducing the computational burden of high-dimensional groundwater simulations, but only applied to confined groundwater flow. A new methodology is proposed that reduces the dimension of a discretized, transient, unconfined groundwater-flow model. This unconfined model reduction technique is based on Galerkin projection and the Newton formulation of MODFLOW. The method is implemented following the standard package design and code structure that MODFLOW employs for all its features. When the package is invoked within MODFLOW it can collect snapshots, produce a basis, construct the reduced model and propagate the reduced model forward in time. The new formulation accurately represents the water-table surface under a variety of nonlinear settings, such as intraborehole flow from a Multi-Node Well. The unconfined model reduction is applied to four test cases to illustrate its flexibility in handling nonlinear features. Several test cases are discussed to demonstrate the unconfined model reduction applicability. The final test case applies the new model reduction methodology to a scoping MODFLOW model of Santa Barbara, CA composed of 113,578 cells, which requires solving 113,578 equations per time step, and reduces it to 127 equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call