Abstract

A generalized and efficient technique of reduced-order model (ROM) is proposed in this paper for stability and steady-state response analysis of an asymmetric rotor based on three-dimensional (3D) finite element model. The equations of motion of the asymmetric rotor-bearing system are established in the rotating frame. Therefore, the periodic time-variant coefficients only exist at a tiny minority of degrees-of-freedom (DOFs) of bearings. During the model reduction process, the asymmetric rotor-bearing system is divided into rotor and bearings. Only the rotor was reduced. And the physical coordinates of bearings are kept in the reduced model during reduction. Then, the relationship between the rotor and bearings is established by inserting periodic time-variant stiffness and damping matrix of bearings into the reduced model of rotor. There is no reduction to the matrices of bearings, which guarantees the accuracy of the calculation. This technique combined with fixed-interface component mode synthesis (CMS) and free-interface CMS is compared with other existing modal reduction method on an off-center asymmetric rotor and shows good performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.