Abstract
Paper presents an effective technique for developing reduced-order models to predict the dynamic responses of systems using the receptance coupling and frequency-based substructuring (RCFBS) method. The proposed approach is particularly suited for reconfigurable dynamic systems across various applications, like cars, robots, mechanical machineries, and aerospace structures. The methodology focuses on determining the overall system receptance matrix by coupling the receptance matrices (FRFs) of individual subsystems in a disassembled configuration. Two case studies, one with distributed parameters and the other with lumped parameters, are used to illustrate the application of this approach. The first case involves coupling three substructures with flexible components under fixed–fixed boundary conditions, while the second case examines the coupling of subsystems characterized by multiple masses, springs, and dampers, with various internal and connection degrees of freedom. The accuracy of the proposed method is validated against a numerical finite element analysis (FEA), direct methods, and a modal analysis. The results demonstrate the reliability of RCFBS in predicting dynamic responses for reconfigurable systems, offering an efficient framework for reduced-order modeling by focusing on critical points of interest without the need to account for detailed modeling with numerous degrees of freedom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.