Abstract

The magnetic polarizability tensor (MPT) is an economical characterisation of a conducting magnetic object, which can assist with identifying hidden targets in metal detection. The MPT’s coefficients depend on multiple parameters of interest including the object shape, size, electrical conductivity, magnetic permeability, and the frequency of excitation. The computation of the coefficients follow from post-processing an eddy current transmission problem solved numerically using high-order finite elements. To reduce the computational cost of constructing these characterisations for multiple different parameters, we compare three methods by which the MPT can be efficiently calculated for two-dimensional parameter sets, with different levels of code invasiveness. We compare, with numerical examples, a neural network regression of MPT eigenvalues with a projection-based reduced order model (ROM) and a neural network enhanced ROM (POD–NN) for predicting MPT coefficients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call