Abstract

This article deals with the fault detection problem for a class of Takagi–Sugeno (T–S) fuzzy semi-Markov jump systems (FSMJSs) with partly unknown transition rates (PUTRs) subject to output quantization by designing a reduced-order filter. First, a more general PUTRs model is constructed to describe the situation that the information of some elements is completely unknown, where this model is affected simultaneously by PU information and time-varying parameter compared with the traditional PUTRs model. Second, we take full advantage of the reduced-order filter to address the fault detection problem for FSMJSs, in which the stochastic failure phenomenon is injected into the reduced-order filter. Besides, the logarithmic quantizer is employed to tackle the limited bandwidth problem in a communication channel. Consequently, the new sufficient conditions are developed based on the Lyapunov theory to obtain the desired reduced-order filter. Simulation results with respect to the tunnel diode circuit are provided to demonstrate the usefulness and availability of the established theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.