Abstract

This study investigated putative mechanisms of impaired spinal opioid antinociception such as a downregulation of mu-opioid receptor (MOR) number, coupling, and efficacy in rats with advanced (12 weeks) streptozotocin (STZ)-induced diabetes. Intravenous injection of STZ (45 mg/kg) in Wistar rats led to selective degeneration of insulin-producing pancreatic ß-cells, elevated blood glucose, and mechanical hyperalgesia. In these animals, dose-dependent and naloxone-reversible intrathecal fentanyl antinociception was significantly impaired and associated with a loss in MOR immunoreactivity of calcitonin gene-related peptide–immunoreactive (CGRP-IR) sensory nerve terminals, membrane-bound MOR binding sites, and MOR-stimulated G protein coupling within the dorsal horn of the spinal cord. Intrathecal delivery of nerve growth factor (NGF) in diabetic animals normalized spinal MOR number and G protein coupling and rescued spinal fentanyl-induced antinociception. These findings identify for the first time a loss in functional MOR on central terminals of sensory neurons as a contributing factor for the impaired spinal opioid responsiveness during advanced STZ-induced diabetes that can be reversed by NGF. Moreover, they support growing evidence of a distinct regulation of opioid responsiveness during various painful states of disease (eg, arthritis, cancer, neuropathy) and may give novel therapeutic incentives. PerspectiveIn diabetic neuropathy a loss in sensory neuron mu-opioid receptor number and coupling contributes to impaired spinal opioid antinociception that can be reversed by NGF. These findings support growing evidence of a distinct regulation of opioid responsiveness during various painful diseases and may give novel therapeutic incentives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.