Abstract
Near-UV LEDs emitting at around 400 nm can be used e.g. as pump light source in tri-phosphor RGB white luminescence-conversion LEDs with high color rendering. 1 Although non-thermal roll-over decreases towards shorter emission wavelengths in GaInN-based LEDs, this effect still limits the efficiency of 400 nm emitting LEDs at current densities above 50 A/cm 2 . One way to overcome non-thermal roll-over is to combine a GaInN wide-well active region with the growth on low dislocation density (DD) substrates. Single-well LEDs with GaInN layer widths between 3 nm and 18 nm were grown (a) directly on sapphire substrates with a resulting DD of 10 9 cm -2 , (b) on low DD GaN templates on sapphire (DD of 10 8 cm -2 ), and (c) on freestanding GaN substrates (FS-GaN, DD of 4×107 cm -2 ). At low current densities (pulsed mode operation) the LEDs with a 3 nm GaInN QW active region showed the highest efficiency, irrespective of the substrate. However, the electroluminescence (EL) efficiency peaks at around 50 A/cm 2 and shows a clear non-thermal roll-over towards higher current densities. The efficiency of LEDs with well widths >3 nm grown on sapphire decreases with increasing well width over the whole range of current densities (≤300 A/cm 2 ). However, when grown on low DD GaN templates or FS-GaN, the efficiency of the LEDs with 11 and 18 nm wide GaInN layers surpasses that of the conventional LEDs (well widths ≤6 nm) for current densities ≥250 A/cm 2 , yielding the highest EL efficiency of all LED-structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.