Abstract
In this study we investigated a family with paramyotonia (PC) congenita caused by a Gly1306Val mutation in the voltage-gated sodium-channel gene SCN4A. A previous study showed that exposure to cold aggravates the muscle stiffness in patients with this mutation. However, the mechanism behind cold sensitivity and the sodium-channel defect remained unclear. In order to gain a better understanding of sarcolemmal propagation in these patients, we measured muscle-fiber conduction velocity (MFCV) invasively. We studied four PC patients and four healthy subjects at room temperature. After the muscle was cooled, MFCV was measured again in the two PC patients and four control subjects. MFCV was significantly lower in the PC patients at room temperature, compatible with dysfunctional sodium channels. After cooling, MFCV was significantly lower in both groups as compared with room temperature. The relative slowing was 1.4% per degrees C for PC patients and 1.5% per degrees C for healthy subjects. These results indicate that, in these PC patients, mutant and wild-type sodium channels respond equally to cold exposure. Thus, MFCV is abnormal in these patients, but the aggravation of muscle stiffness cannot be explained by an abnormal sarcolemmal response to cold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.