Abstract

Noctilucent clouds (NLC) and polar mesospheric summer echoes (PMSE) are phenomena that occur in the summertime polar regions due to the presence of ice particles around the mesopause. That ice particles are able to form in a region with such low water vapour concentration as the mesopause is noteworthy. Even though the summer mesopause is the coldest region on Earth, temperatures are generally not low enough for homogeneous nucleation to occur, which necessitates the presence of pre-existing condensation nuclei. The nature of these nuclei has long puzzled the scientific community and many candidates have been suggested, such as particles of meteoric origin, ion clusters, sodium bi-carbonate, sulfate aerosols and soot particles. Out of these the so-called “smoke particles”, i.e. particles re-condensed from ablated meteoritic material, have long been considered the most likely. Generally, it has been believed that these particles exist in numbers of the order of thousands per cubic centimetre at the mesopause. This belief is based on 1-dimensional studies of meteoric material. A recent 2-dimensional model study, which includes the atmospheric circulation from summer to winter pole however, suggests much lower number densities at the summer mesopause. We here investigate the implications of low number densities for the formation of ice particles. We find that even though resulting ice particle distribution may produce typical NLC brightness, the number density of ice particles is not consistent with what is expected for NLC and PMSE. In particular, it is much lower than the ice particle concentration (>1000 cm −3) typically expected to explain the “electron bite-outs” that are frequently observed in the vicinity of PMSE’s. We therefore re-examine the assumptions and parameters that determine the smoke distribution. We show that even though the number of condensation nuclei at the polar summer mesopause can be increased within the uncertainties, the results in most scenarios remain insufficient. We show that charged particles, perhaps in combination with significant deviations from the mean mesospheric state, may be necessary for condensation of ice particles in the polar summer mesosphere. Hence, we raise the question whether the conventional ideas of nucleation on meteoric smoke, which are used in current mesospheric ice models, are correct.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call