Abstract

Metabolic flexibility is the ability to match biofuel availability to utilization and is inversely associated with increased metabolic burden among liver transplant (LT) recipients. The present study evaluated the impact of metabolic flexibility on weight gain following LT. LT recipients were enrolled prospectively (n = 47) and followed for 6 months. Metabolic flexibility was measured using whole-room calorimetry and is expressed as a respiratory quotient (RQ). Peak RQ represents maximal carbohydrate metabolism and occurs in the post-prandial state, while trough RQ represents maximal fatty acid metabolism occurring in the fasted state. The clinical, metabolic, and laboratory characteristics of the study cohort of lost weight (n = 14) and gained weight (n = 33) were similar at baseline. Patients who lost weight were more likely to reach maximal RQ (maximal carbohydrate oxidation) early and rapidly transitioned to trough RQ (maximal fatty acid oxidation). In contrast, patients who gained weight had delayed time to peak RQ and trough RQ. In multivariate modeling, time to peak RQ (β-coefficient 0.509, p = 0.01), time from peak RQ to trough RQ (β-coefficient 0.634, p = 0.006), and interaction between time to peak RQ to trough RQ and fasting RQ (β-coefficient 0.447, p = 0.02) directly correlated with the severity of weight gain. No statistically significant relationship between peak RQ, trough RQ, and weight change was demonstrated. Inefficient transition between biofuels (carbohydrates and fatty acids) is associated with weight gain in LT recipients that is independent of clinical metabolic risk. These data offer novel insight into the physiology of obesity after LT with the potential to develop new diagnostics and therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.