Abstract
BackgroundMammalian target of rapamycin (mTOR) is a master regulator of various cellular responses by forming two functional complexes, mTORC1 and mTORC2. mTOR signaling is frequently dysregulated in pancreatic neuroendocrine tumors (PNETs). mTOR inhibitors have been used in attempts to treat these lesions, and prolonged progression free survival has been recorded. If this holds true also for the multiple endocrine neoplasia type 1 (MEN1) associated PNETs is yet unclear. We investigated the relationship between expression of the MEN1 protein menin and mTOR signaling in the presence or absence of the mTOR inhibitor rapamycin.MethodsIn addition to use of menin wild type and menin-null mouse embryonic fibroblasts (MEFs), menin was silenced by siRNA in pancreatic neuroendocrine tumor cell line BON-1. Panels of protein phosphorylation, as activation markers downstream of PI3k-mTOR-Akt pathways, as well as menin expression were evaluated by immunoblotting. The impact of menin expression in the presence and absence of rapamycin was determinate upon Wound healing, migration and proliferation in MEFs and BON1 cells.ResultsPDGF-BB markedly increased phosphorylation of mTORC2 substrate Akt, at serine 473 (S473) and threonine 450 (T450) in menin−/− MEFs but did not alter phosphorylation of mTORC1 substrates ribosomal protein S6 or eIF4B. Acute rapamycin treatment by mTORC1-S6 inhibition caused a greater enhancement of Akt phosphorylation on S473 in menin−/− cells as compared to menin+/+ MEFs (116% vs 38%). Chronic rapamycin treatment, which inhibits both mTORC1and 2, reduced Akt phosphorylation of S473 to a lesser extent in menin−/− MEFs than menin+/+ MEFs (25% vs 75%). Silencing of menin expression in human PNET cell line (BON1) also enhanced Akt phosphorylation at S473, but not activation of mTORC1. Interestingly, silencing menin in BON1 cells elevated S473 phosphorylation of Akt in both acute and chronic treatments with rapamycin. Finally, we show that the inhibitory effect of rapamycin on serum mediated wound healing and cell migration is impaired in menin−/− MEFs, as well as in menin-silenced BON1 cells.ConclusionsMenin is involved in regulatory mechanism between the two mTOR complexes, and its reduced expression is accompanied with increased mTORC2-Akt signaling, which consequently impairs anti-migratory effect of rapamycin.
Highlights
Mammalian target of rapamycin is a master regulator of various cellular responses by forming two functional complexes, mTORC1 and mTORC2. mTOR signaling is frequently dysregulated in pancreatic neuroendocrine tumors (PNETs). mTOR inhibitors have been used in attempts to treat these lesions, and prolonged progression free survival has been recorded
Lack of menin enhances mTORC2-Akt, but not mTORC1S6 activation Previous studies on Mouse embryo fibroblast (MEF) and many other cell types have shown that mTORC2 is an essential regulator required for activation of Akt by phosphorylation at serine 473 (S473) [10, 21, 22], whereas mTORC1 is responsible for phosphorylation and activation of ribosomal protein S6 [23]
We initially employed the use of menin-deficient MEFs as a valuable model in order to determine the molecular effect of menin deletion on mTOR downstream substrates
Summary
Mammalian target of rapamycin (mTOR) is a master regulator of various cellular responses by forming two functional complexes, mTORC1 and mTORC2. mTOR signaling is frequently dysregulated in pancreatic neuroendocrine tumors (PNETs). mTOR inhibitors have been used in attempts to treat these lesions, and prolonged progression free survival has been recorded. MTOR inhibitors have been used in attempts to treat these lesions, and prolonged progression free survival has been recorded. MTOR signaling is frequently dysregulated in pancreatic neuroendocrine tumors (PNETs). If this holds true for the multiple endocrine neoplasia type 1 (MEN1) associated PNETs is yet unclear. Pancreatic neroendocrine tumors (PNETs) occur sporadically or inherited as part of the multiple endocrine neoplasia type (MEN1) trait caused by inactivating germline mutations in the MEN1 suppressor gene, encoding the protein menin. Advanced disease stages are frequently present already at diagnosis requiring systemic antitumoral therapies These therapies show variable but often limited effects [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.