Abstract

Human embryonic stem cells (hESCs) can be captured in a primed state resembling the postimplantation epiblast or in a naïve state resembling the preimplantation epiblast. Naïve conditions allow the study of preimplantation development ex vivo but reportedly lead to chromosomal abnormalities, compromising their utility in research and potential therapeutic applications. Although MEK inhibition is essential for the naïve state, here we show that reduced MEK inhibition facilitates the establishment and maintenance of naïve hESCs that retain naïve-specific features, including global DNA hypomethylation, HERVK expression and X chromosome reactivation. We further show that hESCs cultured under these modified conditions proliferate more rapidly, accrue fewer chromosomal abnormalities and display changes in the phosphorylation levels of MAPK components, regulators of DNA damage/repair, and cell cycle. We thus provide a simple modification to current methods to enable robust growth and reduced genomic instability in naïve hESCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.