Abstract

Reduced lung function in early infancy has been associated with later obstructive airway diseases. We assessed whether reduced lung function shortly after birth predicts asthma 10 years later. We conducted a prospective birth cohort study of healthy infants in which we measured lung function shortly after birth with the use of tidal breathing flow-volume loops (the fraction of expiratory time to peak tidal expiratory flow to total expiratory time [t(PTEF)/t(E)]) in 802 infants and passive respiratory mechanics, including respiratory-system compliance, in 664 infants. At 10 years of age, 616 children (77%) were reassessed by measuring lung function, exercise-induced bronchoconstriction, and bronchial hyperresponsiveness (by means of a methacholine challenge) and by conducting a structured interview to determine whether there was a history of asthma or current asthma. As compared with children whose t(PTEF)/t(E) shortly after birth was above the median, children whose t(PTEF)/t(E) was at or below the median were more likely at 10 years of age to have a history of asthma (24.3% vs. 16.2%, P=0.01), to have current asthma (14.6% vs. 7.5%, P=0.005), and to have severe bronchial hyperresponsiveness, defined as a methacholine dose of less than 1.0 micromol causing a 20% fall in the forced expiratory volume in 1 second (FEV1) (9.1% vs. 4.9%, P=0.05). As compared with children whose respiratory-system compliance was above the median, children with respiratory compliance at or below the median more often had a history of asthma (27.4% vs. 14.8%; P=0.001) and current asthma (15.0% vs. 7.7%, P=0.009), although this measure was not associated with later measurements of lung function. At 10 years of age, t(PTEF)/t(E) at birth correlated weakly with the maximal midexpiratory flow rate (r=0.10, P=0.01) but not with FEV1 or forced vital capacity. Reduced lung function at birth is associated with an increased risk of asthma by 10 years of age.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.