Abstract

BackgroundLung radiation injury is a critical complication of radiotherapy (RT) for thoracic esophageal carcinoma (EC). Therefore, the goal of this study was to investigate the feasibility and dosimetric effects of reducing the lung tissue irradiation dose during RT for thoracic EC by applying volumetric modulated arc radiotherapy (VMAT) combined with active breathing control (ABC) for moderate deep inspiration breath-hold (mDIBH).MethodsFifteen patients with thoracic EC were randomly selected to undergo two series of computed tomography (CT) simulation scans with ABC used to achieve mDIBH (representing 80% of peak DIBH value) versus free breathing (FB). Gross tumor volumes were contoured on different CT images, and planning target volumes (PTVs) were obtained using different margins. For PTV-FB, intensity-modulated radiotherapy (IMRT) was designed with seven fields, and VMAT included two whole arcs. For PTV-DIBH, VMAT with three 135° arcs was applied, and the corresponding plans were named: IMRT-FB, VMAT-FB, and VMAT-DIBH, respectively. Dosimetric differences between the different plans were compared.ResultsThe heart volumes decreased by 19.85%, while total lung volume increased by 52.54% in mDIBH, compared to FB (p < 0.05). The mean conformality index values and homogeneity index values for VMAT-DIBH (0.86, 1.07) were slightly worse than those for IMRT-FB (0.90, 1.05) and VMAT-FB (0.90, 1.06) (p > 0.05). Furthermore, compared to IMRT-FB and VMAT-FB, VMAT-DIBH reduced the mean total lung dose by 18.64% and 17.84%, respectively (p < 0.05); moreover, the V5, V10, V20, and V30 values for IMRT-FB and VMAT-FB were reduced by 10.84% and 10.65% (p > 0.05), 12.5% and 20% (p < 0.05), 30.77% and 33.33% (p < 0.05), and 50.33% and 49.15% (p < 0.05), respectively. However, the heart dose-volume indices were similar between VMAT-DIBH and VMAT-FB which were lower than IMRT-FB without being statistically significant (p > 0.05). The monitor units and treatment time of VMAT-DIBH were also the lowest (p < 0.05).ConclusionsVMAT combined with ABC to achieve mDIBH is a feasible approach for RT of thoracic EC. Furthermore, this method has the potential to effectively reduce lung dose in a shorter treatment time and with better targeting accuracy.

Highlights

  • Esophageal carcinoma (EC) is one of the most common malignant tumor types worldwide, and its incidence continues to rise [1]

  • Comparison of Gross tumor volume (GTV), planning target volumes (PTVs), total lung and heart volumes As shown in Table 1, the mean GTV volume determined with free breathing (FB) was 11.75%, and this was greater than that determined with moderate deep inspiration breath-hold (mDIBH)

  • The D1% and D99% were similar among the intensity modulated radiotherapy (IMRT)-FB, volumetric modulated arc radiotherapy (VMAT)-FB and VMAT-DIBH plans (p > 0.05)

Read more

Summary

Introduction

Esophageal carcinoma (EC) is one of the most common malignant tumor types worldwide, and its incidence continues to rise [1]. IMRT, VMAT, and HT have achieved a more conformal and homogeneous dose distribution with the application of beam intensity modulated technology and a multileaf collimator (MLC) system compared with 3D-CRT. VMAT can achieve similar, if not better, dose distribution compared with IMRT with shorter treatment times and fewer monitor units (MUs) [15,16,17,18,19]. Given the shorter duration of the treatment associated with VMAT and the other technologies available, the damage to normal tissue can be minimized [19]. The goal of this study was to investigate the feasibility and dosimetric effects of reducing the lung tissue irradiation dose during RT for thoracic EC by applying volumetric modulated arc radiotherapy (VMAT) combined with active breathing control (ABC) for moderate deep inspiration breath-hold (mDIBH)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.