Abstract

Thermal management has become a crucial area for further development of high-power light-emitting didoes (LEDs) due to the high operating current densities that are required and result in additional joule heating. This increased joule heating negatively affects the performance of the LEDs since it greatly decreases both the optical performance and the lifetime. To circumvent this problem, a reduced graphene oxide (rGO) layer can be inserted to act as a heat spreader. In this study, current–voltage and light-output-current measurements are systematically performed at different temperatures from 30 to 190 °C to investigate the effect that the embedded rGO pattern has on the device performance. At a high temperature and high operating current, the junction temperature (Tj) is 23% lower and the external quantum efficiency (EQE) is 24% higher for the rGO embedded LEDs relative to those of conventional LEDs. In addition, the thermal activation energy of the rGO embedded LEDs exhibits a 30% enhancement as a function of the temperature at a bias of −5 V. This indicates that the rGO pattern plays an essential role in decreasing the junction temperature and results in a favorable performance in terms of the temperature of the high power GaN-based LED junction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.