Abstract

Recent research has highlighted the complex interactions among chronic injury- or disease-induced joint limitations, walking asymmetry, and increased metabolic cost. Determining the specific metabolic impacts of asymmetry or joint impairment in clinical populations is difficult because of concurrent neurological and physiological changes. This work investigates the metabolic impact of gait asymmetry and joint restriction by unilaterally (asymmetric) and bilaterally (symmetric) restricting ankle, knee, and combined ankle and knee ranges of motion in unimpaired individuals. We calculated propulsive asymmetry, temporal asymmetry, and step-length asymmetry for an average gait cycle; metabolic rate; average positive center of mass power using the individual limbs method; and muscle effort using lower limb electromyography measurements weighted by corresponding physiological cross-sectional areas. Unilateral restriction caused propulsive and temporal asymmetry but less metabolically expensive gait than bilateral restriction. Changes in asymmetry did not correlate with changes in metabolic cost. Interestingly, bilateral restriction increased average positive center of mass power compared to unilateral restriction. Further, increased average positive center of mass power correlated with increased energy costs, suggesting asymmetric step-to-step transitions did not drive metabolic changes. The number of restricted joints reduces available degrees of freedom and may have a larger metabolic impact than gait asymmetry, as this correlated significantly with increases in metabolic rate for 7/9 participants. These results emphasize symmetry is not by definition metabolically optimal, indicate that the mechanics underlying symmetry are meaningful, and suggest that available degrees of freedom should be considered in designing future interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.