Abstract

Threshold elevation following monocular adaptation is weaker in the unadapted eye than in the adapted eye. At least 15 studies have measured this interocular transfer (IOT) phenomenon, and typically report around 60% transfer. Yet almost all of these studies used spatial frequencies above 3c/deg, very slow temporal parameters, and criterion sensitive methods (method of adjustment, yes/no). In recent work, we (Meese and Baker 2011, i-Perception2 159–182) found markedly weaker interocular transfer at low spatial and high temporal frequencies. Here, we measure IOT in 9 observers for a broad range of spatiotemporal frequencies (0.5, 2, and 8c/deg; 1, 4, and 15Hz) using a 2AFC paradigm. Targets were horizontal Gabor patches with a full-width-at-half height of 1.67 (lower frequencies) or 6.68 (8c/deg) grating cycles. Adaptors were larger gratings with the same spatiotemporal properties as the targets. Observers adapted for 2 min initially, and 5 s between each trial, with monocular presentation enabled by shutt...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.