Abstract

Reduced graphene oxide (r-GO) membranes with narrow channels exhibit salt rejections comparable to conventional nanofiltration (NF) membranes. However, their water permeances are much lower because of the high tortuosity for water permeation. Herein, we report a facile solution-processable approach to create in-plane nanopores on GO nanosheets before reduction, dramatically decreasing the tortuosity and increasing water permeance while retaining the salt rejection. Specifically, holey GO (HGO) nanosheets were prepared via chemical etching using hydrogen peroxide followed by the deposition on a porous support by vacuum filtration and then reduction via exposure to hydriodic acid solutions to generate the reduced HGO (r-HGO) membrane. The generation of nanopores increases the water permeance from 0.4 L m-2 h-1 bar-1 (LMH/bar) to 6.6 LMH/bar with Na2SO4 rejection greater than 98.5%, and the membranes were robust under strong cross-flow shearing force for 36 h. Both water permeance and Na2SO4 rejection of these r-HGO membranes for the first time simultaneously reach the level of the commercial polyamide-based NF membranes. Given their good antibacterial properties and resistance to aggressive chemical washing, the r-HGO membranes show promise as next-generation NF membranes for desalination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.