Abstract

To evaluate the mechanisms of suppression of postprandial hypertriglyceridemia by fish oil rich in docosahexaenoic acid, the effect on the intestinal absorption of triglyceride, activities of lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) and metabolism of chylomicrons (CM) and CM remnants were compared with that of safflower oil in Sprague-Dawley rats in a series of studies. The feeding of fish oil for 3 wk suppressed postprandial hypertriglyceridemia (study 1). Dietary fish oil did not alter the rate of lymphatic absorption of triglyceride (study 2). The activities of LPL and HTGL were measured at 5 h after the beginning of feeding, when serum triglyceride concentrations were highest in both dietary groups. The activities of LPL in adipose tissue and heart were greater (P < 0.05) and those of HTGL were lower (P < 0.05) in the rats fed fish oil (study 3). In contrast, there were no differences in the activities of LPL and HTGL in postheparin plasma between the fish and safflower oil groups (study 4). The clearance rates of CM and CM remnants were measured by injecting intravenously CM collected from rats fed safflower or fish oils with [14C]triolein and [3H]cholesterol (study 5). Dietary oil did not influence the half-lives of CM or CM remnants. The secretion of triglyceride from the liver of rats injected with Triton WR-1339 was lower (P < 0.05) in the rats fed docosahexaenoic acid, a major component of fish oil, than those fed linoleic acid, a major component of safflower oil (study 6). These observations strongly support the hypothesis that in rats, the principal cause of the suppression of postprandial hypertriglyceridemia by fish oil is the depression of triglyceride secretion from the liver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call