Abstract

BackgroundThe end-organ effects of alcohol span throughout the entire body, from the gastrointestinal tract to the central nervous system (CNS). In the intestine, alcohol use changes the microbiome composition and increases gut permeability allowing translocation of microbial components into the circulation. Gut-derived pathogen-associated signals initiate inflammatory responses in the liver and possibly elsewhere in the body. Because previous studies showed that the gut microbiome contributes to alcohol-induced liver disease, we hypothesized that antibiotic administration to reduce the gut microbiome would attenuate alcohol-induced inflammation in the brain and small intestine (SI).MethodsSix- to 8-week-old C57BL/6J female mice were fed alcohol in a liquid diet or a calorie-matched control diet for 10 days with an acute alcohol binge or sugar on the final day (acute-on-chronic alcohol administration). Some mice were treated with oral antibiotics daily to diminish the gut microbiome. We compared serum levels of TNFα, IL-6, and IL-1β by ELISA; expression of cytokines Tnfα, Mcp1, Hmgb1, Il-17, Il-23, Il-6, and Cox2; and inflammasome components Il-1β, Il-18, Casp1, Asc, and Nlrp3 in the CNS and SI by qRT-PCR. Microglial morphology was analyzed using immunohistochemical IBA1 staining in the cortex and hippocampus.ResultsAntibiotics dramatically reduced the gut microbiome load in both alcohol- and pair-fed mice. Alcohol-induced neuroinflammation and increase in SI cytokine expression were attenuated in mice with antibiotic treatment. Acute-on-chronic alcohol did not induce serum TNFα, IL-6, and IL-1β. Alcohol feeding significantly increased the expression of proinflammatory cytokines such as Tnfα, Mcp1, Hmgb1, Il-17, and Il-23 in the brain and intestine. Reduction in the gut bacterial load, as a result of antibiotic treatment, attenuated the expression of all of these alcohol-induced proinflammatory cytokines in both the brain and SI. Alcohol feeding resulted in microglia activation and morphologic changes in the cortex and hippocampus characterized by a reactive phenotype. These alcohol-induced changes were abrogated following an antibiotic-induced reduction in the gut microbiome. Unexpectedly, antibiotic treatment increased the mRNA expression of some inflammasome components in both the brain and intestine.ConclusionsOur data show for the first time that the acute-on-chronic alcohol administration in mice induces both neuroinflammation and intestinal inflammation and that reduction in the intestinal bacterial load can attenuate alcohol-associated CNS and gut inflammation. Gut microbiome-derived signals contribute to neuroinflammation in acute-on-chronic alcohol exposure.

Highlights

  • The end-organ effects of alcohol span throughout the entire body, from the gastrointestinal tract to the central nervous system (CNS)

  • Following acute-on-chronic alcohol consumption in mice (10 days of alcohol followed by an acute alcohol binge), we show that alcohol induces neuroinflammation in the CNS and increases cytokine expression in the small intestine

  • Antibiotic treatment dramatically decontaminates gut bacterial load While the modulating effects of chronic alcohol administration have been studied in the gut microbiome, alcoholic liver disease, and neuroinflammation, it is unclear how shorter alcohol use and/or alcohol binge affect inflammation signaling in the CNS and what role the gut microbiome plays in this process

Read more

Summary

Introduction

The end-organ effects of alcohol span throughout the entire body, from the gastrointestinal tract to the central nervous system (CNS). Prolonged alcohol consumption leads to translocation of gut bacterial components, such as endotoxin, from the intestinal lumen into the circulation [1,2,3]. Alcohol along with gut-derived endotoxin is delivered via the portal circulation to the liver where metabolism begins and an inflammatory cascade is initiated. While previous studies have investigated the direct effects of alcohol on the brain [4,5,6], little is known about the role of gut-derived microbial products and their impact on the nervous system and neuroinflammation. Endotoxin is not generally believed to cross the blood-brain barrier [20], data from TLR4 knockout mice suggests that signaling through TLR4 is an important component influencing alcohol-induced neuroinflammation. Neuroinflammation is mediated by the inflammasome complex, a multiprotein complex that senses pathogens and danger signals leading to cleavage and release of proinflammatory IL-1β and IL-18 [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call