Abstract

Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.