Abstract

Thin films of reduced graphene oxide–multiwalled carbon nanotube (rGO–MWCNT) composites were demonstrated as sensing membrane electrodes for single-stranded DNA (ssDNA) detection. The morphology of the rGO–MWCNT composite thin films was observed via field emission scanning electron microscopy. The GO sheet and MWCNTs were clearly obtained, and the MWCNTs were uniformly distributed on the surface of the GO. The chemical bonding of the rGO–MWCNTs was examined using Fourier transform infrared spectroscopy. The element compositions of carbon, silicon, and oxygen were confirmed via energy-dispersive X-ray spectroscopy and X-ray powder diffraction analysis. The biosensor demonstrated high sensitivity to the ssDNA target with a linear range from 500 to 100 pM. Furthermore, the biosensor demonstrated good selectivity, reproducibility, and long-term stability for DNA detection. Since, the biosensor responded very-well and demonstrated excellent detection capabilities, it is highly recommended to be used in detecting specific biomarkers and other targeted proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.