Abstract

AbstractThe nature of rigidity and low energy density of polypyrrole (PPy)‐based electrodes limits their wide application in flexible energy storage devices. In this study, reduced graphene oxide (rGO) wrapped polypyrrole (PPy)/oxidized carbon cloth (OCC) (rGO@PPy/OCC) is prepared by the polymerization of pyrrole using MnO2 as the oxidant on the surface of OCC followed by the adsorption and reduction of graphene oxide (GO). The prepared rGO@PPy/OCC electrode exhibits a high gravimetric specific capacitance of 547 F g−1 at a current density of 0.5 A g−1 and a high area specific capacitance of 1641 mF cm−2 at a current density of 1.5 mA cm−2. It nearly maintains the initial capacitance after 8000 cycles at a high scan rate of 200 mV s−1 and at a large current density of 10 A g−1. Moreover, the flexible rGO@PPy/OCC electrodes are used to construct flexible solid‐state supercapacitors (FSSC). The FSSC based on rGO@PPy/OCC exhibits a high energy density (33.89 Wh kg−1 and 101.81 µWh cm−2) and a capacitance retention of 95.10% after 1000 bending cycles, demonstrating the excellent cycling stability and flexibility. Therefore, it is potential for rGO@PPy/OCC as a flexible electrode to fabricate high‐performance FSSC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.