Abstract

Sodium-ion batteries (SIBs) have received considerable attention in recent years. Anode material is one of the key factors that determine SIBs' electrochemical performance. Current commercial hard carbon anode shows poor rate performance, which greatly limits applications of SIBs. In this study, a novel vanadium-based material, SrV4O9, was proposed as an anode for SIBs, and its Na+ storage properties were studied for the first time. To enhance the electrical conductivity of SrV4O9 material, a microflower structure was designed and reduced graphene oxide (rGO) was introduced as a host to support SrV4O9 microflowers. The microflower structure effectively reduced electron diffusion distance, thus enhancing the electrical conductivity of the SrV4O9 material. The rGO showed excellent flexibility and electrical conductivity, which effectively improved the cycling life and rate performance of the SrV4O9 composite material. As a result, the SrV4O9@rGO composite showed excellent electrochemical performance (a stable capacity of 273.4 mAh g-1 after 200 cycles at 0.2 A g-1 and a high capacity of 120.4 mAh g-1 at 10.0 A g-1), indicating that SrV4O9@rGO composite can be an ideal anode material for SIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.