Abstract

AbstractHerein, we are described a green route to prepare reduced graphene oxide supported cobalt inorganic complex nanocomposite (GRGO/[Co(bpy)3]) (bpy=2,2′‐bipyridine) through facile and wet chemical approach. The formation of the nanocomposite was confirmed through suitable physical and chemical characterization techniques. The GRGO/[Co(bpy)3] nanocomposite was coated on the pretreated glassy carbon electrode (GCE). The GCE/GRGO/[Co(bpy)3] modified electrode has excellent electrocatalytic ability towards methyl parathion reduction, while the overpotential drops drastically to –0.18 V (vs. Ag/AgCl). Moreover, the effect of concentration, scan rate and electrolyte pH were detail studied. Besides, the linear response range was 0.05‐1700 μM and the detection limit was 0.0029 μM (S/N=3) and the sensitivity was 1.8197 μA μM−1 cm−2. Moreover, the fabricated electrode has high level of selectivity, which delivers satisfactory repeatability, reproducibility and stability. The sensing method was successfully demonstrated in real samples such as, tomato and apple samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.