Abstract

AbstractThis article aims to investigate the impact of reduced graphene oxide (RGO) nanofillers on the curing kinetics, thermal stability, mechanical modulus, electrical conductivity, and EMI shielding effectiveness of unsaturated polyester resin (UPR). The curing rates of UPR/styrene (60/40 by wt%) mixtures with small amounts of RGO (0.1–0.3 wt%) exhibit slight delays owing to the barrier and scavenger roles of 2‐dimensional RGO sheets. Nonetheless, it is observed that within the cured nanocomposites, RGOs are effectively dispersed and firmly bonded to the UPR matrix at interfaces through hydrogen bonding and π‐π interactions. Consequently, the nanocomposites display heightened thermal decomposition temperatures and increased residue at 800°C with higher RGO loading content. The addition of RGO notably improves the elastic storage modulus and increases the temperature associated with glass transition‐related relaxation. The electrical percolation threshold is attained at a specific RGO loading between 0.2 and 0.3 wt%. Thus, the nanocomposite with 0.3 wt% RGO is characterized to have an electrical conductivity of 1.9 × 10−6 S/cm and an EMI shielding effectiveness of ~9 dB at 8 GHz, for a thickness of 1 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.