Abstract
The fabrication of nanofiller-reinforced intrinsic healable polymer composite films with both excellent mechanical robustness and highly efficient healability is challenging because the mobility of the polymer chains is suppressed by the incorporated nanofillers. In this study, we exploit the reversible host-guest interactions between nanofillers and the matrix polymer films and report the fabrication of intrinsically healable, reduced graphene oxide (RGO)-reinforced polymer composite films capable of conveniently and repeatedly healing cuts of several tens of micrometers wide. The healable films can be prepared via layer-by-layer assembly of poly(acrylic acid) (PAA) with complexes of branched poly(ethylenimine) grafted with ferrocene (bPEI-Fc) and RGO nanosheets modified with β-cyclodextrin (RGO-CD) (denoted as bPEI-Fc&RGO-CD). The as-prepared PAA/bPEI-Fc&RGO-CD films are mechanically robust with a Young's modulus of 17.2 ± 1.9 GPa and a hardness of 1.00 ± 0.30 GPa. The healing process involves two steps: (i) healing of cuts in an oxidation condition in which the host-guest interactions between bPEI-Fc and RGO-CD nanosheets are broken and the cuts on the films are healed; and (ii) reconstruction of host-guest interactions between bPEI-Fc and RGO-CD nanosheets via reduction to restore the original mechanical robustness of the films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.