Abstract
In this study, a reduced graphene oxide/polyacrylamide (rGO/PAM) three-dimensional (3D) composite hydrogel coupled with current collector graphite brush (GB) was developed as anode for microbial fuel cells (MFCs). The rGO/PAM was fabricated through in-situ polymerization of acrylamide in graphene oxide dispersion, followed by reduction with ascorbic acid. The resulting macro-porous scaffold with high surface area and biocompatibility was benefit for both mass diffusion of the culture medium, microbial colonization and electron mediators. As a result, the GB/rGO/PAM anode produces a remarkably high maximum power density and volumetric power density of 758 mW m−2 and 53 W m−3 at the stable state of power generation, respectively. Moreover, the orientated rGO/PAM (O-rGO/PAM) with higher conductivity could further improve the maximum power density of MFCs, achieving 782 mW m−2. The above results are substantially higher than those of traditional GB, plain carbon cloth (CC), and the control GB/GO/PAM and CC/rGO/PAM based electrodes measured under the same conditions. The new 3D composite hydrogel electrode shows great promise for improving the power generation of MFCs devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.