Abstract

Heterojunction photodetector based on reduced graphene oxide (rGO) has been realized using a spin coating technique. The electrical and optical characterization of bare GO and thermally reduced GO thin films deposited on glass substrate has been carried out. Ultraviolet–visible–infrared transmittance measurements of the GO and rGO thin films revealed broad absorption range, while the absorbance analysis evaluates rGO band gap of about 2.8 eV. The effect of GO reduction process on the photoresponse capability is reported. The current–voltage characteristics and the responsivity of rGO/n-Si based device have been investigated using laser diode wavelengths from UV up to IR spectral range. An energy band diagram of the heterojunction has been proposed to explain the current versus voltage characteristics. The device demonstrates a photoresponse at a broad spectral range with a maximum responsivity and detectivity of 0.20 A/W and 7 × 1010 cmHz/W, respectively. Notably, the obtained results indicate that the rGO based device can be useful for broadband radiation detection compatible with silicon device technology.

Highlights

  • Heterojunction photodetector based on reduced graphene oxide has been realized using a spin coating technique

  • The graphene oxides (GOs)-based samples used for the electrical investigation are represented by two narrow lines made of GO and reduced graphene oxide (rGO), respectively, with a length of 10 mm, a width of 1 mm and a thickness of 0.1 mm

  • The photoresponsivity, in the UV–IR spectral range, of rGO/n-Si heterojunction fabricated by spin coating process have been reported

Read more

Summary

Introduction

Heterojunction photodetector based on reduced graphene oxide (rGO) has been realized using a spin coating technique. A photodetector based rGO/n-Si heterojunction is presented to detect light radiation in a wavelength range from 375 to 920 nm.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call