Abstract

Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call