Abstract

Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Herein, a highly active and stable MoS2 electrocatalyst is supported on reduced graphene oxide‐modified carbon nanotube/polyimide (PI/CNT‐RGO) film for hydrogen evolution reaction (HER). The PI/CNT‐RGO film allows the intimate growth of MoS2 nanoparticles on its surface. The nanosize and high dispersion of MoS2 nanoparticles provide a vast amount of available edge sites and the coupling of RGO and MoS2 enhances the electron transfer between the edge sites and the substrate, greatly improving the HER activity of PI/CNT‐RGO‐MoS2 film. The MoS2 with a smaller loading less than 0.04 mg cm−2 on the PI/CNT‐RGO film exhibits excellent HER activities with a low overpotential of 0.09 V and large current densities, as well as good stability. The Tafel slope of 61 mV dec−1 reveals the Volmer–Heyrovsky mechanism for HER. Thus, this work paves a potential pathway for designing efficient MoS2‐based electrocatalysts for HER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.