Abstract
Rechargeable lithium (Li) metal batteries hold great promise for revolutionizing current energy-storage technologies. However, the uncontrollable growth of lithium dendrites impedes the service of Li anodes in high energy and safety batteries. There are numerous studies on Li anodes, yet little attention has been paid to the intrinsic electrocrystallization characteristics of Li metal and their underlying mechanisms. Herein, a guided growth of planar Li layers, instead of random Li dendrites, is achieved on self-assembled reduced graphene oxide (rGO). In situ optical observation is performed to monitor the morphology evolution of such a planar Li layer. Moreover, the underlying mechanism during electrodeposition/stripping is revealed using ab initio molecular dynamics simulations. The combined experiment and simulation results show that when Li atoms are deposited on rGO, each layer of Li atoms grows along (110) crystallographic plane of the Li crystals because of the fine in-plane lattice matching between Li and the rGO substrate, resulting in planar Li deposition. With this specific topographic characteristic, a highly flexible lithium-sulfur (Li-S) full cell with rGO-guided planar Li layers as the anode exhibits stable cycling performance and high specific energy and power densities. This work enriches the fundamental understanding of Li electrocrystallization without dendrites and provides guidance for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.