Abstract

Excessive consumption of antibiotics like gentamicin (GEN) can lead to hostile effects as antibiotic resistance. Therefore, the detection is important for which, reduced graphene oxide-Gadolinium oxide nanocomposite (rGO@Gd2O3 NC) was composed through co-precipitation method for the detection of GEN. The structural, morphological and functional group characterizations were done using XRD, FT-IR, SEM and TEM techniques. The cyclic voltammetry (CV) showed excellent electrocatalytic activity and superior performance towards GEN detection. Through the use of GEN monoclonal antibodies (anti-GEN) on a screen-printed electrode (SPE), a very sensitive electrochemical immunosensor was fabricated. Covalent interactions were employed to construct the electrochemical immunosensor, while bovine serum albumin (BSA) was employed as a blocking agent on the anti-GEN/rGO@Gd2O3/SPE electrode surface. The analysis of the CV response of the BSA/anti-GEN/rGO@Gd2O3/SPE bioelectrode demonstrated linear detection range from 1 pM – 100 μM, along with limit of detection (LOD) of 0.424 pM and sensitivity of 44.87 μA pM-1 cm− 2. Additionally, rGO@Gd2O3 immunosensor, exhibited a good level of linearity with R2 value of 0.978. These findings indicate the excellent potential of the rGO@Gd2O3 electrochemical immunosensor for accurately detecting GEN in spiked milk samples at different concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call