Abstract

Graphene-based electrical chemical vapor sensors can achieve extremely high sensitivity, whereas the comparatively slow sensing response and recovery, the research focused on only low concentration detection, have been known as drawbacks for many applications requiring rapid and high concentration detection. Here we report a novel graphene-based fiber-optic relative humidity (RH) sensor relying on fundamentally different sensing mechanism. The sensor can achieve power variation of up to 6.9 dB in high relative humidity range (70-95%), and display linear response with correlation coefficient of 98.2%, sensitivity of 0.31 dB/%RH, response speed of faster than 0.13%RH/s, and good repeatability in 75-95%RH. Theoretical analysis of sensing mechanism can explain the experimental result, and reveal the broad applying prospect of the sensor for other kinds of chemical vapor detection. This novel graphene-based optical sensor provides a beneficial complement to the existing electrical ones, and will promote the employment of graphene in chemical sensing techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.