Abstract

Neurite alignment and elongation play special roles in the treatment of neuron disease, design of tissue engineering implants, and bioelectrodes applications. For instance, the trigeminal neurons (TGNs) free nerve endings are a key component of the pulp-dentin complex. The reinnervation of the pulp canal space requires the recruitment of apically positioned free nerve endings through axonal guidance. Many studies have been carried to develop patterned two-dimensional substrates or three-dimensional scaffolds with aligned topographical structures to guide axonal growth. However, most of the strategies are either complicated/inconvenient in process or time-/cost-sacrifice. One-step dimensionally confined hydrothermal (DCH) technique has been considered an effective and facile approach to fabricate reduced graphene oxide fibers (rGOFs), and the rGOFs have shown significant potential in regulating neural stem cells differentiation toward neurons. Here, inspired by the relationship between the lateral size of GO nanosheets and the electrical conductivity of GO films made from GO sheets as a building block, we fabricated surface conductivity and topography-controlled rGOFs based on the DCH method. Well "self-patterned" directional channel structure of rGOF showed outstanding ability to improve the neurofilament alignment and migration, with the cell deviation angle less than 10° for over 90% of the cells, while a porous surface structure tended to form neuron nets. All of the rGOF possessed excellent cytocompatibility with TGNs. Our results underlined the high degree of alignment of topographical cues in guidance of neurite over high electrical conductivity. The as-prepared rGOFs could be used in many areas including biosensing, electrochemistry, energy, and peripheral or central nerve tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.