Abstract

The diffusion layer (DL) in the structure of the membrane electrode assembly (MEA) of a micro direct methanol fuel cell (μDMFC) plays an essential role in reactant/product mass transfer and catalyst loading. The material selection and structure design of the μDMFC affects its performance. In this work, a reduced graphene oxide/carbon paper (rGO/CP) was proposed and prepared for the anode DL of a μDMFC. It was prepared using electrophoretic sedimentation combined with an in situ reduction method. The rGO/CP reduced the cell’s ohmic and charge transfer resistances. Meanwhile, it provided more significant mass transfer resistance to reduce the methanol crossover, allowing the cell to operate stably at higher concentrations for a longer duration than conventional μDMFCs. The experimental results showed that the maximum power density increased by 53% compared with the traditional anode DL of carbon paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.