Abstract

Ternary nanocomposites have attracted increasing attention as efficient supercapacitor electrode materials. Here we report, the synthesis of a ternary hybrid nanocomposite by the introduction of crystalline RuO2 nanoparticles loaded carbon nanocoils (CNCs) as spacers in reduced graphene oxide (RGO). The RGO-(RuO2/CNCs) composite electrode exhibits a high specific capacitance of 725Fg−1 at a scan rate of 20mVs−1 in three-electrode configuration. When used in symmetric two electrode configuration, it shows a specific capacitance of 436Fg−1 at a constant current density of 1Ag−1, which is nearly three times higher than that of pure RGO based electrode. An aqueous asymmetric supercapacitor fabricated using RGO-(RuO2/CNCs) as the positive electrode and RGO as the negative electrode is operational in an electrochemically stable potential window of 2V. The asymmetric capacitor exhibits a high energy density of 45WhKg−1 at a power density of 1kWkg−1 and retains an energy density of 41WhKg−1 even at a high power density of 40kWkg−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.