Abstract

BiOBr-reduced graphene oxide (RGO) composites were successfully synthesized via a simple hydrothermal method. Their morphology, structure and photocatalytic activity in the degradation of nitrobenzene were characterized by scanning electron microscopy, X-ray diffraction, nitrogen adsorption-desorption, UV–vis absorption spectroscopy, photoluminescence spectra, electrochemical impedance spectra and total organic carbon, respectively. The results showed that the introduction of RGO could enhance the visible light photocatalytic activity of BiOBr. The BiOBr-RGO composite with 0.6wt% RGO exhibited an optimal photocatalytic activity, and the maximum degradation rate of nitrobenzene was about 2.16 times that of pure BiOBr due to the increased light absorption and the reduced electron-hole pair recombination in BiOBr with the introduction of RGO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.