Abstract
The gene expression at the branch point of chlorophyll and heme synthesis in the model microalga, Chlamydomonas reinhardtii, is different from that of higher plants. Another green alga, Arctic Chlorella, was recently isolated from Arctic sea ice and may be a promising candidate for a biofuel. To understand the chlorophyll metabolic pathway and relevant nuclear gene expression in Chlorella sp., we characterized chlorophyll-deficient mutants of the Arctic Chlorella sp. ArM0029B. First, we characterized the chlorophyll and heme biosynthetic pathways based on genes identified by bioinformatics analysis of the genome of Arctic Chlorella sp. ArM0029B. Then, we isolated and analyzed nine chlorophyll-deficient mutants that showed reduced expression of the ChlM gene, which encodes Mg-protoporphyrin methyltransferase. Expression of 5-amino levulinic acid dehydratase (encoded by ALAD) and glutamyl-tRNA reductase (encoded by HemA) was reduced in all nine independent mutants compared to wild type. These results indicated that Arctic Chlorella ArM0029B may have a regulatory mechanism of gene expression at earlier steps of the Mg-porphyrin branch that is more similar to higher plants than to the microalga C. reinhardtii. This study provides useful insight into the regulation of porphyrin precursor formation in Chlorella and related microalgae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.