Abstract

This paper presents DSC and NMR study of how the kerotolytic drug, salicylic acid (SA), affects the thermotropic and morphological behavior of a model membrane, dipalmitoyl phosphatidic acid (DPPA). The membrane–drug system has been studied in the multilamellar vesicular (MLV) and in the unilamellar vesicular (ULV) forms, for SA/DPPA molar ratios from 0 to 0.5. The mode of interaction of SA molecules with DPPA is similar in MLV and ULV. Chain-melting transition becomes sharper and shifts to higher temperatures in the presence of the drug, implying an enhanced co-operativity of the acyl chains. NMR and DSC data indicate that the drug molecules are located in the aqueous interfacial region neighboring the lipid headgroups. The membrane becomes more rigid in the presence of the drug molecules, due to a stronger interaction between the lipid headgroups leading to reduced permeability. ULVs are destroyed by even a short equilibration at room temperature, whereas prolonged equilibration of the MLV only leads to a slightly reduced interaction between the lipid headgroups due to sequestering of the drug molecules in the interfacial aqueous region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call