Abstract

The performance of multidimensional spatially selective radiofrequency (RF) pulses is often limited by their long duration. In this article, high-order, nonlinear gradients are exploited to reduce multidimensional RF pulse length. Specifically, by leveraging the multidimensional spatial dependence of second-order gradients, a two-dimensional spatial-spectral RF pulse is designed to achieve three-dimensional spatial selectivity, i.e., to excite a circular region-of-interest in a thin slice for reduced field-of-view imaging. Compared to conventional methods that use three-dimensional RF pulses and linear gradients, the proposed method requires only two-dimensional RF pulses, and thus can significantly shorten the RF pulses and/or improve excitation accuracy. The proposed method has been validated through Bloch equation simulations and phantom experiments on a commercial 3.0T MRI scanner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.