Abstract

It remains unclear whether malignant glioma cells can deliver tumor antigens efficiently to major histocompatibility complex (MHC) Class I molecules. To elucidate the mechanism of antigen presentation in malignant gliomas, the authors examined the expression of the transporter associated with antigen processing 1 (TAP1), which transports antigens to MHC Class I molecules, and low-molecular-mass polypeptide 2 (LMP2), which is a subunit of a proteasome. They also analyzed the effects of interferon (IFN)-gamma and IFN-beta on the expression of these molecules. Five glioma cells expressed undetectable or very low levels of TAP1 protein and did not express TAP1 messenger (m)RNA. Normal brain tissue and glioma tissue specimens also showed undetectable levels of TAP1 protein and the same levels of LMP2 protein as lymphoblastoid B cells. Treatments of the tumor cells with IFN-gamma, or -beta enhanced the expression of both TAP1 protein and mRNA as well as the expression of MHC Class I molecules. The expression of LMP2 protein was not altered by the IFN treatments. The authors analyzed structural alterations in the TAP1 promoter region in eight malignant glioma cell lines. Single nucleotide polymorphism was found in 446 bp up-stream of the translation start site of the TAP1 gene, and a point mutation was found in 34 bp upstream of the TAP1 gene. Malignant glioma cells may be less immunogenic due to low levels of TAP1 expression. Upregulated expression of TAP1 and MHC Class I molecules by IFN-gamma and -beta may enhance antigen presentation in malignant glioma cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call