Abstract
Laminin-5 (alpha3, beta3, gamma2 chains) is a major component of corneal basement membrane and has a crucial role in corneal epithelial cell adhesion. On the other hand, diabetic keratopathy has a varied degree of adhesive disturbance in corneal epithelial cells. Therefore, in this study, we investigated whether a high glucose condition altered the expression of laminin-5 in corneal epithelial cells in vitro. Human corneal epithelial (HCE) cells were cultured in either normal (5 mmol/L) or high glucose (30 mmol/L) medium for 5 passages before being used in experiments. We first examined the effect of a high glucose condition on the expression of mRNA and proteins for 3 chains of laminin-5 in HCE cells by semiquantitative reverse transcriptase-polymerase chain reaction, Western blotting analysis, and immunofluorescence staining. Second, we tried a cell detachment assay. After 5 days of incubation in high or normal glucose medium, HCE cells were treated with a solution of 0.05% trypsin and EDTA (0.2 mmol/L), pH = 8. The number of detached cells at different times after treatment was determined using a cell count machine. We found that alpha3 chain expression was reduced at the mRNA level in a high glucose condition, whereas beta3 and gamma2 chains showed no change. The high glucose condition induced the inhibition in the synthesis of 190-kd, 160-kd alpha3 chain and 105-kd gamma2 chain proteins of laminin-5. The adhesion capacity of HCE cells in the high glucose medium was weaker than that of HCE cells in normal glucose medium. Soluble laminin-5 rescued the detachment of HCE cells in high glucose medium. The loss of homeostatic levels of laminin-5 under a high glucose condition may correlate to weaken epithelial cell adhesion, resulting in the clinical manifestation of diabetic keratopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.