Abstract
Respiratory syncytial virus (RSV) is a common cause of bronchiolitis in infants with a wide spectrum of disease severity. Besides environmental and genetic factors, it is thought that the innate immune system plays a pivotal role. The aim of this study was to investigate the expression of immune receptors on monocytes and the in vitro responsiveness from infants with severe RSV infections. Peripheral blood mononuclear cells (PBMCs) from infants with RSV infections were isolated. Classical, intermediate and nonclassical monocytes were immunophenotyped for the expression of CD14, CD16, human leukocyte antigen (HLA)-ABC and HLA-DR. PBMCs were stimulated with lipopolysaccharide to determine the secretion of tumor necrosis factor and interleukin (IL)-10 with enzyme-linked immunosorbent assay. During RSV infection, intermediate monocytes are increased in the peripheral blood, whereas classical and nonclassical monocytes are reduced. The expression of CD14 and HLA-ABC is increased on monocytes, whereas the expression of HLA-DR is suppressed. Low HLA-DR expression is correlated with increased disease severity. PBMCs from infants with severe RSV infections show an impaired IL-10 response in vitro. Phenotyping subpopulations of monocytes combined with in vitro responsiveness reveals significant differences between nonsevere and severe RSV infections. Reduced HLA-DR expression and impaired IL-10 production in vitro during severe RSV infections indicate that an imbalanced innate immune response may play an important role in disease severity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.