Abstract

A-type K+ channels (A-channels) are crucial in controlling neuronal excitability, and their downregulation in pain-sensing neurons may increase pain sensation. To test this hypothesis, we first characterized the expression of two A-channels, Kv3.4 and Kv4.3, in rat dorsal root ganglion (DRG) neurons. Kv3.4 was expressed mainly in the nociceptive DRG neurons, in their somata, axons, and nerve terminals innervating the dorsal horn of spinal cord. In contrast, Kv4.3 appeared selectively in the somata of a subset of nonpeptidergic nociceptive DRG neurons. Most Kv4.3(+) DRG neurons also expressed Kv3.4. In a neuropathic pain model induced by spinal nerve ligation in rats, the protein levels of Kv3.4 and Kv4.3 in the DRG neurons were greatly reduced. After Kv3.4 or Kv4.3 expression in lumbar DRG neurons was suppressed by intrathecal injections of antisense oligodeoxynucleotides, mechanical but not thermal hypersensitivity developed. Together, our data suggest that reduced expression of A-channels in pain-sensing neurons may induce mechanical hypersensitivity, a major symptom of neuropathic pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.