Abstract

Patients with type 2 diabetes mellitus are at increased risk for the development of atherosclerosis. A pivotal event in the development of atherosclerosis is macrophage foam cell formation. The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 regulate macrophage cholesterol efflux and hence play a vital role in macrophage foam cell formation. We have previously found that chronic elevated glucose reduces ABCG1 expression. In the present study, we examined whether patients with type 2 diabetes mellitus had decreased ABCG1 and/or ABCA1, impaired cholesterol efflux, and increased macrophage foam cell formation. Blood was collected from patients with and without type 2 diabetes mellitus. Peripheral blood monocytes were differentiated into macrophages, and cholesterol efflux assays, immunoblots, histological analysis, and intracellular cholesteryl ester measurements were performed. Macrophages from patients with type 2 diabetes mellitus had a 30% reduction in cholesterol efflux with a corresponding 60% increase in cholesterol accumulation relative to control subjects. ABCG1 was present in macrophages from control subjects but was undetectable in macrophages from patients with type 2 diabetes mellitus. In contrast, ABCA1 expression in macrophages was similar in both control subjects and patients with type 2 diabetes mellitus. Macrophage expression of ABCG1 in both patients and control subjects was induced by treatment with the liver X receptor agonist TO-901317. Upregulation of liver X receptor dramatically reduced foam cell formation in macrophages from patients with type 2 diabetes mellitus. ABCG1 expression and cholesterol efflux are reduced in patients with type 2 diabetes mellitus. This impaired ABCG1-mediated cholesterol efflux significantly correlates with increased intracellular cholesterol accumulation. Strategies to upregulate ABCG1 expression and function in type 2 diabetes mellitus could have therapeutic potential for limiting the accelerated vascular disease observed in patients with type 2 diabetes mellitus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.