Abstract

One characteristic of heart failure (HF) is increased sympathetic activation. The paraventricular nucleus (PVN) of the hypothalamus (involved in control of sympathetic outflow) has been shown to have increased neuronal activation during HF. This study examined the influence of endogenous GABA input (inhibitory in nature) into the PVN on renal sympathetic nerve discharge (RSND), arterial blood pressure (BP), and heart rate (HR) in rats with HF induced by coronary artery ligation. In alpha-chloralose- and urethane-anesthetized rats, microinjection of bicuculline (a GABA antagonist) into the PVN produced a dose-dependent increase in RSND, BP, and HR in both sham-operated control and HF rats. Bicuculline attenuated the increase in RSND and BP in HF rats compared with control rats. Alternatively, microinjection of the GABA agonist muscimol produced a dose-dependent decrease in RSND, BP, and HR in both control and HF rats. Muscimol was also less effective in decreasing RSND, BP, and HR in HF rats than in control rats. These results suggest that endogenous GABA-mediated input into the PVN of rats with HF is less effective in suppressing RSND and BP compared with control rats. This is partly due to the post-release actions of GABA, possibly caused by altered function of post-synaptic GABA receptors in the PVN of rats with HF. Reduced GABA-mediated inhibition in the PVN may contribute to increased sympathetic outflow, which is commonly observed during HF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call