Abstract

Intraperitoneal chemotherapy confers limited clinical benefit as a result of the dose-limiting toxicity of anticancer drugs. We aimed to develop optimized liposomes for mitoxantrone (MTO) administration that provide high encapsulation efficiency and increase the therapeutic index. Cationic MTO was loaded onto anionic liposomes by electrostatic surface complexation. The anticancer activity was evaluated in a peritoneal carcinomatosis model. The retention of MTO at the tumor site was monitored by molecular imaging. MTO loading efficiencies by electrostatic complexation were >95% for all anionic liposomes but <5% for neutral liposomes. Among anionic liposomes, cardiolipin liposomes (CLs) exhibited the strongest binding affinity for MTO, the highest anticancer activity, and the lowest toxicity. MTO delivered by CLs showed prolonged retention at tumor sites. Unlike free MTO showing significant cardiotoxicity, MTO administered in CLs provided negligible cardiotoxicity. CL-mediated delivery may increase the therapeutic index of MTO chemotherapy by prolonged retention and reduced cardiotoxicity. From the Clinical Editor The authors report the development of optimized liposomes for intraperitoneal mitoxantrone delivery that provides high encapsulation efficiency and increases the therapeutic index. Cardiolipin liposomes exhibited the strongest binding affinity for mitoxantrone, along with the highest anti-cancer activity and lowest toxicity, including negligible cardiotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.