Abstract
BackgroundThe purpose was to assess radiation dose, image quality, and diagnostic performance of reduced-dose scanning with iterative reconstruction (IR) compared with standard-dose with filtered back projection (FBP) with CT urography for detection of bladder tumor. This study was prospectively conducted on 21 patients with bladder masses. All patients were subjected to two scanning protocols: protocol A (standard dose with FBP) and protocol B (additional limited scan to the pelvis at delayed phase with low dose with IR). Based on body weight (< or > 80 kg), each protocol was subdivided into 2 protocols A1 (130 kVp) and A2 (130 kVp) and protocols B1 (80 kVp) and B2 (110 kVp). Radiation dose was assessed in terms of mean CT dose index (CTDI), Dose-length product (DLP) and effective dose (ED). Image quality and diagnostic accuracy were compared in both groups.ResultsMean CTDI, DLP and ED were reduced by average 72.3 % in the 80 kVp protocol (B1) and by 36.3% in 110 kVp (B2) protocol compared to standard-dose protocols. There were significantly lower SNR (signal to noise ratio) between protocol A1 and B1 at aorta and psoas muscles. Subjective image quality analysis revealed no statistically significant differences between the protocol A2 and B2 whereas there were significant differences between protocol A1and B1 as regards to visual image noise and overall image quality. Diagnostic accuracy was identical among different protocols.ConclusionCT urography with IR scanning showed reduced radiation dose and no difference in detection of urothelial carcinomas from standard dose with FBP despite of degraded image quality in 80 kVp scanning.
Highlights
The purpose was to assess radiation dose, image quality, and diagnostic performance of reduceddose scanning with iterative reconstruction (IR) compared with standard-dose with filtered back projection (FBP) with Computed tomography (CT) urography for detection of bladder tumor
The 21 patients underwent standard-dose CT urography protocol A and additional limited scan to the pelvis at delayed phase protocol B. scan protocols were subdivided into 4 groups protocol A1 and B1
Radiation dose The mean volume CT dose indices (CTDI) for group A1(130 kVp) and B1(80 kVp) were 6.64 ± .40 and 1.95 ± 1.12 mGy, respectively, while for groups A2(130 kVp) and B2(110 kVp), it was 6.71 ± .46 and 4.58 ± .35 mGy, respectively; this represents decrease by 71.5% for 80 kVp protocol (B1) and 31.7% for the 110 kVp protocol (B2) versus standard-dose protocols; this is described in details in the Table 2
Summary
The purpose was to assess radiation dose, image quality, and diagnostic performance of reduceddose scanning with iterative reconstruction (IR) compared with standard-dose with filtered back projection (FBP) with CT urography for detection of bladder tumor. This study was prospectively conducted on 21 patients with bladder masses. All patients were subjected to two scanning protocols: protocol A (standard dose with FBP) and protocol B (additional limited scan to the pelvis at delayed phase with low dose with IR). CT Urography (CTU) is one-step technique that allows full evaluation of the urinary tract for urothelial tumors, renal masses and stones in a single examination. In traditional CTU protocols patients receive radiation dose of about 54 mGy, the reduction of radiation dose in CTU has been an important item to be resolved [1, 2]. Radiation dose reduction with filtered back projection (FBP) reconstruction techniques is associated
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Egyptian Journal of Radiology and Nuclear Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.